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In Harding (Transactions of American Mathematical Society(1996) 348(5), 1839–
1862), it was shown that the direct product decompositions of a setX naturally form an
orthomodular posetFact X. Here it is shown thatFact Xhas a state if and only ifX is
finite. An example is also given of a finite orthomodular poset that can be embedded
into Fact Xfor X countable, but not forX finite.

1. INTRODUCTION

In Harding (1996; see also Harding, 1998, 1999), a method was given to
construct an orthomodular posetFact Xfrom the direct product decompositions of
a set. As this forms the basis of our study we briefly review the pertinent facts. For
a setX let Eq Xdenote the set of equivalence relations onX, use◦ for relational
product,1 for the least equivalence relation onX, and∇ for the largest. Define

Fact X= {(θ, θ ′) | θ, θ ′ ∈ Eq X, θ ∩ θ ′ = 1, θ ◦ θ ′ = ∇}.
Let≤be the relation onFact Xdefined by setting (θ, θ ′) ≤ (φ, φ′) if θ ⊆ φ, φ′ ⊆ θ ,
and all of θ, θ ′, φ, φ′ permute under relational product. Define a unary opera-
tion⊥ on Fact Xby setting (θ, θ ′)⊥ = (θ ′, θ ). Then as shown in Harding (1996),
(Fact X,≤,⊥) is an orthomodular poset with (θ, θ ′) ∨ (φ, φ′) = (θ ◦ φ, θ ′ ∩ φ′)
for (θ, θ ′) orthogonal to (φ, φ′). The notationFact X is used because such pairs
(θ, θ ′) are commonly called factor pairs, andFact X is called the orthomodular
poset of decompositions ofX because the factor pairs are exactly those pairs of
equivalence relations that occur as the kernels of the projection operators associated
with a binary direct product decompositionX ∼= Y × Z.

If X is the underlying set of some algebraA, then the factor pairs (θ, θ ′) which
are compatible with this additional structure (i.e., which are congruences) form
a suborthomodular posetFact A of Fact X. For a vector spaceV the correspon-
dence between subspaces ofV and congruences ofV, as well as the fact that all
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congruences ofV permute, allows an easy description ofFact V. LettingS(V) be
the lattice of subspaces ofV, up to isomorphism

Fact V = {(S, S′) | S, S′ ∈ S(V), S∩ S′ = {0}, S+ S′ = V},
where (S, S′) ≤ (T, T ′) iff S⊆ T and T ′ ⊆ S′, and (S, S′)⊥ = (S′, S). Here,
(S, S′) ∨ (T, T ′) = (S+ T, S′ ∩ T ′) when (S, S′) is orthogonal to (T, T ′).

The reader is directed to Kalmbach (1983) and Pt´ak and Pulmannov´a (1991)
for general background on orthomodular lattices and orthomodular posets. The
term suborthomodular poset means a subsetSof an orthomodular posetP which
is closed under orthocomplementation and finite orthogonal joins. A block of
an orthomodular posetP is a maximal Boolean suborthomodular poset ofP. A
state on an orthomodular posetP is a mapσ : P→ [0, 1] such that (i)σ is order
preserving, (ii)σ (0)= 0, (iii) σ (x′) = 1− σ (x) for all x ∈ P, and (iv)σ (x ∨ y) =
σ (x)+ σ (y) for all x ≤ y′.

2. A LEMMA

Lemma 2.1. For V a three-dimensional vector space over the two element field
Z2, Fact V has exactly one state, and this state takes the value1/3 on each
atom.

Proof: The lattice of subspaces of any three-dimensional vector space is a projec-
tive plane where the one-dimensional subspaces are the points, the two-dimensional
subspaces the lines, and incidence between points and lines is given by set contain-
ment. ForV a three-dimensional vector space overZ2, the associated seven-point
projective plane is commonly called the Fano plane. We use the geometric notation
of pq for the line determined by two distinct pointsp, q andl ∧m for the unique
intersection point of the distinct linesl , m. So the atoms ofFact Vare the ordered
pairs (p, l) wherep is a point,l is a line, withp I/ l . Note that (p0, l0) ⊥ (p1, l1)
iff p0 I l 1 and p1 I l 0. The following claim is immediate.

Claim 1. Each block ofFact Vhas exactly three atoms, and the third atom of the
block containing the atoms (p, l ) and (q, m) is (l ∧m, pq).

Supposeσ is a state onFact V.

Claim 2. σ (p, l ) = σ (q, l ) for any linel and any points,p,q I/ l .

Proof: Let pq = m andl ∧m= r . Supposes, t are the other two points on the
line l. Then (p, l ), (q, l ) ⊥ (s,m), (t,m). Hence, by Claim 1, we have the following
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blocks:

(p, l ), (s,m), (r, ps) (2.1)

(p, l ), (t,m), (r, pt) (2.2)

(q, l ), (s,m), (r,qs) (2.3)

(q, l ), (t,m), (r,qt) (2.4)

Let n be the third line through the pointr, hencen contains none of the pointsp,
q, s, t . Let u, v be the points onn that differ fromr. As sp intersectsn at a point
different fromr, eitherspuare collinear, orspvare collinear. We may assumespu
are collinear. It follows thattpv, sqv, andtquare all sets of collinear points. Then,
by Claim 1, we have the following blocks:

(u, l ), (s, n), (r, ps) (2.5)

(u, l ), (t, n), (r,qt) (2.6)

(v, l ), (s, n), (r,qs) (2.7)

(v, l ), (t, n), (r, pt) (2.8)

As the values of the stateσ on the atoms of a block sum to 1 we can there-
fore compare (2.1) and (2.5), (2.4) and (2.6), (2.3) and (2.7), (2.2) and (2.8) to
obtain

σ (u, l )+ σ (s, u) = σ (p, l )+ σ (s,m) (2.9)

σ (u, l )+ σ (t, n) = σ (q, l )+ σ (t,m) (2.10)

σ (v, l )+ σ (s, n) = σ (q, l )+ σ (s,m) (2.11)

σ (v, l )+ σ (t, n) = σ (p, l )+ σ (t,m) (2.12)

Comparing (2.9) minus (2.10) and (2.11) minus (2.12) we obtain

σ (p, l )+ σ (s,m)− σ (q, l )− σ (t,m) = σ (q, l )+ σ (s,m)− σ (p, l )− σ (t,m).

Hence 2σ (p, l ) = 2σ (q, l ), establishing our claim.

Claim 3. σ (p, l ) = σ (p,m) for any pointp and linesl , m with p I/ l ,m.

Proof: Let r = l ∧m andn be a line withp I n andr I/ n. We have the blocks

(r, n), (p, l ), (l ∧ n, rp)

(r, n), (p,m), (m∧ n, rp)

By the previous claimσ (l ∧ n, rp) = σ (m∧ n, rp) henceσ (p, l ) = σ (p,m).
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We are now in a position to prove the lemma. Let (p, l ), (q, m) be any two
atoms ofFact V. There is a pointr I/ l, m. Then by Claims 2 and 3,σ (p, l ) =
σ (r, l ) = σ (r,m) = σ (q,m). As each block has exactly three atoms, it follows
thatσ (p, l ) = 1/3 for each atom (p, l ); hence,Fact Vhas at most one state. But
there is a state onFact Vtaking the value 1/3 on each atom, namely, the state given
by σ (S, S′) = dim(S)/3 (see Harding, 1996, for details).¤

3. APPLICATIONS OF THE LEMMA

We will require some notation for standard notations about vector spaces. Let
κ be a cardinal. Recall that a basis of aκ-dimensional vector spaceW is a map
ξ : κ → W with ξα 6= ξβ for α 6= β such that the image ofξ is an independent set
which spansW. Given such a basisξ , for each elementw ∈ W one has a unique
family of scalarswα, nonzero for only finitely manyα, such thatw =∑wαξα.
Henceforth, we assumeV is a three-dimensional vector space over the two-element
field Z2 and that the sequenceζ0, ζ1, ζ2 is a basis forV. As before we useS(V)
for the lattice of subspaces ofV. Frequent use will be made of the fact that each
ordinalβ has a unique representationβ = α + n whereα is a limit ordinal andn
is a natural number. We useω for the set of natural numbers.

Lemma 3.1. Let κ be an infinite cardinal, W be aκ-dimensional vector space
over Z2, andξ : κ → W be a basis of W. Thenψξ : S(V)→ S(W) defined by

ψξ (S) = {w ∈ W | wα+3nζ0+ wα+3n+1ζ1+ wα+3n+2ζ2 ∈ S

for each n∈ ω and limit ordinal α < κ}
is a bounded lattice embedding.

Proof: As (λw + λ′w′)ε = λw∈ + λ′w′ε , it follows easily thatψξ (S) is indeed a
subspace ofW. It is clear that the mapψξ is order preserving, henceψξ (S∩ T) ⊆
ψξ (S) ∩ ψξ (T) andψξ (S)+ ψξ (T) ⊆ ψξ (S+ T). To show thatψξ is a lattice ho-
momorphism, it remains to show the reverse inequalities. Supposew ∈ ψξ (S) ∩
ψξ (T). For each limit ordinalα < κ and each natural numbern, we havew3nζ0+
w3n+1ζ1+ w3n+2ζ2 in both S and T, hence inS∩ T . Thusψξ (S) ∩ ψξ (T) ⊆
ψξ (S∩ T).

Claim. For any subspaceRof V, the set{aξα+3n + bξα+3n+1+ cξα+3n+2 | α < κ

is a limit ordinal,n ∈ ω andaζ0+ bζ1+ cζ2 ∈ R} spansψξ (R).

Proof: If w ∈ ψξ (R) then wα+3nξα+3n + wα+3n+1ξα+3n+1+ ωα+3n+2ξα+3n+2

also belongs toψξ (R) and clearlyw is a finite sum of such vectors.
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To showψξ (S+ T) ⊆ ψξ (S)+ ψξ (T), it suffices to provide a spanning set of
ψξ (S+ T) contained inψξ (S)+ ψξ (T). Letα < κ be a limit ordinal,nbe a natural
number, and supposew = aξα+3n + bξα+3n+1+ cξα+3n+2 whereaζ0+ bζ1+ cζ2

is in S+ T . Then there area′ζ0+ b′ζ1+ c′ζ2 ∈ S anda′′ζ0+ b′′ζ1+ c′′ζ2 ∈ T
with

aζ0+ bζ1+ cζ2 = (a′ζ0+ b′ζ1+ c′ζ2)+ (a′′ζ0+ b′′ζ1+ c′′ζ2).

Settingw′ = a′ξα+3n + b′ξα+3n+1+ c′ξα+3n+2 andw′′ = a′′ξα+3n + b′′ξα+3n+1+
c′′ξα+3n+2 we then havew = w′ + w′′ and clearlyw′ ∈ ψξ (S) andw′′ ∈ ψξ (T).
Thusw ∈ ψξ (S)+ ψξ (T), showing thatψξ (S+ T) ⊆ ψξ (S)+ ψξ (T).

Having established thatψξ is a lattice homomorphism, note thatψξ clearly
preserves bounds. AsS(V) is a complemented modular lattice, each congruence
of S(V) is determined by its zero equivalence class. Butψξ (S) = {0} iff S= {0}.
Thereforeψξ is an embedding. ¤

In the following lemma we assumeκ is an infinite cardinal,W is a κ-
dimensional vector space overZ2, andξ : κ → W is a basis ofW.

Lemma 3.2. The mapψ (2)
ξ : Fact V→ Fact W defined byψ (2)

ξ (S, S′) = (ψξ (S),
ψξ (S′)) is an order embedding which preserves orthocomplementation and finite
orthogonal joins. Hence Fact V is isomorphic to a suborthomodular poset of
Fact W.

Proof: Suppose (S, S′) and (T, T ′) are elements ofFact V. As (S, S′) ≤ (T, T ′)
iff S≤ T andT ′ ≤ S′, which occurs iffψξ (S) ≤ ψξ (T) andψξ (T ′) ≤ ψξ (S′), we
have thatψ (2)

ξ is an order embedding. As (S, S′)⊥ = (S′, S) one easily sees that
ψ

(2)
ξ preserves orthocomplementation. If (S, S′) and (T, T ′) are orthogonal, then

(S, S′) ∨ (T, T ′) = (S+ T, S′ ∩ T ′). So, if (S, S′) and (T, T ′) are orthogonal in
Fact V, then asψ (2)

ξ is order and orthocomplement preserving we haveψ
(2)
ξ (S, S′)

andψ (2)
ξ (T, T ′) orthogonal inFact Wandψ (2)

ξ ((S, S′) ∨ (T, T ′)) = ψ (2)
ξ (S+ T,

S′ ∩ T ′)= (ψξ (S+ T), ψξ (S′ ∩ T ′))= (ψξ (S)+ ψξ (T), ψξ (S′) ∩ψξ (T ′))=ψ (2)
ξ

(S, S′) ∨ ψ (2)
ξ (T, T ′). ¤

Theorem 3.3. For W a vector space over Z2, Fact W has a state iff W is finite
dimensional.

Proof: If W is of finite dimensionn, defineσ : Fact V→ [0, 1] by setting
σ (S, S′) = dim(S)/n. Clearly σ is order preserving andσ ({0},W) = 0. If S,
T are subspaces with trivial intersection, then dim(S+ T) = dim(S)+ dim(T).
It follows thatσ ((S, S′)⊥) = dim(S′)/n = 1− dim(S)/n = 1− σ (S, S′). And if
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(S, S′) is orthogonal to (T, T ′) then asS∩ T = {0}we haveσ ((S, S′) ∨ (T, T ′)) =
σ (S + T, S′ ∩ T ′) = dim(S + T)/n = dim(S)/n+ dim(T)/n = σ (S, S′)+
σ (T, T ′).

SupposeW is of infinite dimensionκ and letV be a three-dimensional vector
space overZ2 with basisζ0, ζ1, ζ2.

Claim. If A, A′ are complementary subspaces ofW, each of dimensionκ, then
there is a basisξ of Wsuch that (A, A′) is the image underψ (2)

ξ : Fact V→ Fact W
of an atom ofFact V.

Proof: Let µ : κ → A andν : κ → A′ be bases. Recalling that each element
of κ can be uniquely expressed asα + n for some limit ordinalα and some
natural numbern defineξ : κ → W by settingξα+3n = µα+n, ξα+3n+1 = να+2n

andξα+3n+2 = να+2n+1. Then forS the subspace ofV spanned byζ0, andS′ the
subspace ofV spanned byζ1, ζ2, we haveψξ (S) = A andψξ (S′) = A′. It follows
that (A, A′) is the image underψ (2)

ξ of the atom (S, S′) of Fact V.

To conclude the proof, supposeσ : Fact W→ [0, 1] is a state. ChooseA, A′

complementaryκ-dimensional subspaces ofW. Then there is a basisξ such that
(A, A′) is the image underψ (2)

ξ of an atom ofFact V, and asσ ◦ ψ (2)
ξ is a state on

Fact V it follows from Lemma 2.1 thatσ (A, A′) = 1/3. But we may also apply
this process to obtain a basisξ ′ such that (A′, A) is the image underψ (2)

ξ ′ of an
atom ofFact V, henceσ (A′, A) = 1/3. This contradiction showsFact Whas no
state forW infinite dimensional. ¤

Theorem 3.4. For a set X, Fact X has a state iff X is finite and has more than
one element.

Proof: Suppose first thatX is an infinite set of cardinalityκ. As there is a vector
space of cardinalityκ over Z2, there is also a vector spaceW over Z2 having
underlying setX. Clearly Fact W is a suborthomodular poset ofFact X, so it
follows from the previous theorem thatFact Xhas no state.

Suppose now thatX is a finite set with more than one element and letm=
ln |X|. Define a mapσ : Fact X→ [0, 1] by settingσ (θ, θ ′) = (ln |X/θ ′|)/m.
Then we haveσ (1,∇) = (ln 1)/m= 0 andσ is clearly order preserving. For
(θ, θ ′) a factor pair, X ∼= X/θ × Xθ ′ so σ (θ, θ ′)+ σ (θ ′, θ ) = (ln |X/θ ′| +
ln |X/θ |)/m, which by basic properties of logarithms equals (ln(|X/θ ′| ×
|X/θ |)/m= (ln |X|)/m. It follows thatσ ((θ, θ ′)⊥) = 1− σ (θ, θ ′). If (θ, θ ′) and
(φ, φ′) are orthogonal, then as shown in Harding (1996),X ∼= X/θ ′ × X/(θ ◦ φ)×
X/φ′. It follows that σ (θ, θ ′)+ σ (θ ′ ∩ φ′, θ ◦ φ)+ σ (φ, φ′) = 1 and therefore
thatσ ((θ, θ ′) ∨ (φ, φ′)) = σ (θ, θ ′)+ (φ, φ′). Thus forX finite and having more
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than one elementFact Xhas a state. IfX has at most one element, thenFact X is
the one element orthomodular poset which has no state.¤

Theorem 3.5. There is a finite orthomodular poset P which is isomorphic to
a suborthomodular poset of Fact X for X countable, but not isomorphic to a
suborthomodular poset of Fact X for any finite set X.

Proof: Let V be a three-dimensional vector space overZ2 with basisζ0, ζ1, ζ2.
Let S be the subspace ofV spanned byζ0, andS′ be the subspace ofV spanned
by ζ1, ζ2. Then (S, S′) is an atom ofFact V. Let P be the orthomodular poset
consisting of four copies ofFact Vwith an extra block having as its atoms the four
copies of (S, S′). SurelyP is finite. By Lemma 2.1 any state onFact Vtakes value
1/3 on each atom, hence there is no state onP as the sum of the values of the state
on the atoms of the extra block would be 4/3. By the previous theorem,P is not
isomorphic to a suborthomodular poset ofFact Xfor any finite setX.

To show thatP can be embedded intoFact X for X countable, it is enough
to showP is isomorphic to a suborthomodular poset ofFact Wfor W a countable
dimension vector space overZ2, say with basisξ : ω→ W.

Claim 1. There exist basesξ i : ω→ W for i = 0, 1, 2, 3 so that for eachi 6= j

(1) ∃n,m(ξ i
3n = ξ j

3m+1 and
{
ξ i

3n, ξ
i
3n+1, ξ

i
3n+2

} ∩ {ξ j
3m, ξ

j
3m+1, ξ

j
3m+2

} = ξ i
3n

)
(2) ∃n,m(ξ i

3n = ξ j
3m+2 and

{
ξ i

3n, ξ
i
3n+1, ξ

i
3n+2

} ∩ {ξ j
3m, ξ

j
3m+1, ξ

j
3m+2

} = ξ i
3n

)
(3) ∃n,m(ξ i

3n+1 = ξ j
3m and

{
ξ i

3n, ξ
i
3n+1, ξ

i
3n+2

} ∩ {ξ j
3m, ξ

j
3m+1, ξ

j
3m+2

} = ξ i
3n+1

)
(4) ∃n,m(ξ i

3n+1 = ξ j
3m+1 and

{
ξ i

3n, ξ
i
3n+1, ξ

i
3n+2

} ∩ {ξ j
3m, ξ

j
3m+1, ξ

j
3m+2

} = ξ i
3n+1

)
(5) ∃n,m(ξ i

3n+1 = ξ j
3m+2 and

{
ξ i

3n, ξ
i
3n+1, ξ

i
3n+2

} ∩ {ξ j
3m, ξ

j
3m+1, ξ

j
3m+2

} = ξ i
3n+1

)
(6) ∃n,m(ξ i

3n+2 = ξ j
3m and

{
ξ i

3n, ξ
i
3n+1, ξ

i
3n+2

} ∩ {ξ j
3m, ξ

j
3m+1, ξ

j
3m+2

} = ξ i
3n+2

)
(7) ∃n,m(ξ i

3n+2 = ξ j
3m+1 and

{
ξ i

3n, ξ
i
3n+1, ξ

i
3n+2

} ∩ {ξ j
3m, ξ

j
3m+1, ξ

j
3m+2

} = ξ i
3n+2

)
(8) ∃n,m(ξ i

3n+2 = ξ j
3m+2 and

{
ξ i

3n, ξ
i
3n+1, ξ

i
3n+2

} ∩ {ξ j
3m, ξ

j
3m+1, ξ

j
3m+2

} = ξ i
3n+2

)
(9)

{
ξ i

3n | n ∈ ω
} = {ξ4n+i | n ∈ ω}.

Proof: The basesξ i can be constructed by simply rearranging the sequencing
of the basisξ . To constructξ i we first fill every third spot ofξ i with a basis
element of the formξ4n+i . This can be done simply by settingξ i

3n = ξ4n+i . This
ensures the final condition. Note that the other eight conditions are of a finitary
nature—each refers to one triple of elements from each of the basesξ i , ξ j . Also,
as these conditions are to be read as logical statements, the choice of triples may
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vary from condition to condition, that is, a differentm, nmay be chosen for each
condition. One quickly sees it is trivial to fill in triples ofξ i , ξ j to ensure any one
of the conditions, and by separating the triples sufficiently, all eight conditions
may be established for alli 6= j . We then have assigned elements to every third
spot of each sequenceξ i and to finitely many other spots. One then simply fills
in the remaining spots ofξ i in a manner which exhausts the members ofξ which
have not already been used inξ i .

For (S, S′) the atom ofFact Vdescribed above we have the following.

Claim 2. If A andB are subspaces ofV distinct from the bounds andi 6= j , then
ψξ i (A) ⊆ ψξ j (B) iff A= SandB = S′.

Proof: Assumeψξ i (A) ⊆ ψξ j (B) and thataζ0+ bζ1+ cζ2 ∈ A. By definition
of ψξ i it follows that

wn = aξ i
3n + bξ i

3n+1+ cξ i
3n+2

belongs toψξ i (A) and hence toψξ j (B) for any n ∈ ω. Consider the expansion
of wn with respect of the basisξ j . Choosem ∈ ω, let a′ be the coefficient of
the ξ j

3m term of this expansion,b′ be the coefficient of theξ j
3m+1 term, andc′ be

the coefficient of theξ j
3m+2 term. Set

wn,m = a′ζ0+ b′ζ1+ c′ζ2.

As wn belongs toψξ j (B) for eachn ∈ ω, it follows thatwn,m belongs toB for
eachm, n ∈ ω. Applying this observation in conjunction with Conditions (1) and
(2) we haveaζ1,aζ2 ∈ B. Similarly Conditions (3)–(5) providebζ0, bζ1, bζ2 ∈ B
and Conditions (6)–(8) providecζ0, cζ1, cζ2 ∈ B. As B is not the whole ofV it
follows thatb = c = 0. AsA is not trivial, it follows thata 6= 0. This shows both
A= SandB = S′.

Conversely, the elements ofψξ i (S) are precisely those that have zeros in all but
the 3n spots of theirξ i expansion. Thus, by Condition (9),ψξ i (S) is the subspace
spanned by{ξ4n+i | n ∈ ω}. But the elements ofψξ j (S′) are exactly the ones which
have zeros in the 3n spots of theirξ j expansions. Hence, by Condition (9),ψξ j (S′)
is the subspace spanned by{ξn | n ∈ ω} − {ξ4n+ j | n ∈ ω}. Soψξ i (S) ⊆ ψξ j (S′)
concluding the proof of the claim.

To conclude the proof of the theorem, letQ be the subset ofFact Wconsisting
of the union of the images of the mapsψ (2)

ξ i : Fact V→ Fact W for i = 0, 1, 2, 3.
From Claim 2 the images of the atom (S, S′) under these maps are pairwise
orthogonal and these are the only orthogonalities between members of the images
of different maps. ClearlyQ is closed under orthocomplementation, andQ is nearly
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closed under finite orthogonal joins as well. It is only the images of (S, S′) which
are missing orthogonal joins. LetB be the 16-element Boolean suborthomodular
poset ofFact Wgenerated by the images of (S, S′) and setQ′ = Q ∪ B. Note,
if x belongs to the image ofψ (2)

ξ i , andy, z are distinct atoms ofB, thenx is not
orthogonal toy ∨ z as this would implyx is orthogonal to bothy, z contrary to
Claim 2. Therefore there are no new orthogonalities inQ′ which are not already
present in eitherQ or B. It follows that Q′ is closed under finite orthogonal joins
and thatB intersectsQ only at the bounds and the four atoms. It follows thatQ′ is
a suborthomodular poset ofFact Wthat is isomorphic toP. ¤

4. CONCLUSIONS

There are examples of finite orthomodular posets that cannot be embedded
into Fact X for any setX (Harding, 1996, contains one such example, and its
method can be used to create many more). However, one can show that that the
known examples of orthomodular posets which cannot be embedded intoFact X
also cannot be embedded into any orthomodular lattice. A question occurs whether
every orthomodular lattice can be embedded intoFact Xby an embedding which
preserves orthocomplementation and finite orthogonal joins. A positive answer to
this question would be most appealing. It would have the results of this paper as
trivial consequences (there is a finite orthomodular lattice without any state) and
moreover would provide an analog of Cayley’s theorem for orthomodular lattices.
The methods presented here seem insufficient to tackle this problem. However,
one at least obtains the useful information that to embed an orthomodular lattice
L into Fact X, the setX one constructs must be infinite even ifL is finite.
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