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In Harding (Transactions of American Mathematical Soci¢tp96) 3485), 1839—
1862), it was shown that the direct product decompositions of ¥ saturally form an
orthomodular posetact X Here it is shown thaFact Xhas a state if and only X is

finite. An example is also given of a finite orthomodular poset that can be embedded
into Fact Xfor X countable, but not foX finite.

1. INTRODUCTION

In Harding (1996; see also Harding, 1998, 1999), a method was given to
construct an orthomodular pogetct Xfrom the direct product decompositions of
a set. As this forms the basis of our study we briefly review the pertinent facts. For
a setX let Eq Xdenote the set of equivalence relationsXQruseo for relational
product,A for the least equivalence relation #nandV for the largest. Define

FactX={(0,0) 10,0’ e EQX.06NO = A,000 = V).

Let < be the relation ofact Xdefined by settingy, 6') < (¢, ¢')if 6 C ¢, ¢’ C 0,
and all of9,6’, ¢, ¢’ permute under relational product. Define a unary opera-
tion L on Fact X by setting ¢, 8")*- = (¢’, 6). Then as shown in Harding (1996),
(Fact X, <, 1) is an orthomodular poset witld (0") v (¢, ¢') = (0 0 ¢,0" N ')
for (6, 6’) orthogonal to ¢, ¢’). The notationFact Xis used because such pairs
(9, 0") are commonly called factor pairs, afkdct Xis called the orthomodular
poset of decompositions &f because the factor pairs are exactly those pairs of
equivalence relations that occur as the kernels of the projection operators associated
with a binary direct product decompositigh= Y x Z.

If Xis the underlying set of some algel#zahen the factor pair®(6") which
are compatible with this additional structure (i.e., which are congruences) form
a suborthomodular poséact A of Fact X For a vector spac¥ the correspon-
dence between subspacesvofind congruences of, as well as the fact that all
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congruences o permute, allows an easy descriptionFafct V. Letting V) be
the lattice of subspaces ¥f up to isomorphism

FactV=1{(S,S)|S S e SV),SNS ={0}, S+ S =V},

where §, S) <(T,T) iff SCT andT'C S, and G, S)* = (S, 9. Here,
(S S)Vv(T, T)=(S+T,SNT)when S S)is orthogonal to T, T').

The reader is directed to Kalmbach (1983) anakRthd Pulmannav(1991)
for general background on orthomodular lattices and orthomodular posets. The
term suborthomodular poset means a suBsdtan orthomodular pos& which
is closed under orthocomplementation and finite orthogonal joins. A block of
an orthomodular posd is a maximal Boolean suborthomodular posefofA
state on an orthomodular podets a mapo : P — [0, 1] such that (i) is order
preserving, (il (0) = 0, (iii) o (X) = 1 — o(x) forallx € P,and (iv)o(x v y) =
o(X)+o(y)forallx <vy.

2. ALEMMA

Lemma 2.1. For V athree-dimensional vector space over the two element field
Z,, Fact V has exactly one state, and this state takes the vHBi®n each
atom.

Proof: Thelattice of subspaces of any three-dimensional vector space is a projec-
tive plane where the one-dimensional subspaces are the points, the two-dimensional
subspaces the lines, and incidence between points and lines is given by set contain-
ment. ForV a three-dimensional vector space o¥er the associated seven-point
projective plane is commonly called the Fano plane. We use the geometric notation
of pq for the line determined by two distinct poings g andl A m for the unique
intersection point of the distinct linésm. So the atoms dfact Vare the ordered

pairs f, I) wherep is a point,| is a line, withp J I. Note that @o, lo) L (p1,11)

iff po 1 lyandpy | lg. The following claim is immediate.

Claim 1. Each block ofFact Vhas exactly three atoms, and the third atom of the
block containing the atom$(1) and @, m) is (| A m, pQ).

Supposer is a state orfract V.

Claim 2. o(p.l) =o(q, ) for any linel and any pointsp, q J 1.

Proof: Letpg= mandl A m=r. Supposss, t are the other two points on the
linel. Then (. 1), (g,1) L (s, m), (t, m). Hence, by Claim 1, we have the following
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blocks:
(p.1). (s, m), (r, P3) (2.1)
(p.1), (t, m), (r, pt) (2.2)
@.1), (s.m), (r,qs) (2.3)
(@.1), (t, m), (r. qf) (2.4)

Let n be the third line through the point hencen contains none of the poin{s,

g, s, t. Letu, v be the points om that differ fromr. AsSpintersects at a point
different fromr, eitherspuare collinear, ospvare collinear. We may assurapu
are collinear. It follows thatpv, sqv, andtqu are all sets of collinear points. Then,
by Claim 1, we have the following blocks:

(u,1),(s,n), (r, P9 (2.5)
(u 1), (t,n), (r,qt) (2.6)
(v.1). (s, n). (r.T9) (2.7)
(v, 1), (t. n), (r, pt) (2.8)

As the values of the state on the atoms of a block sum to 1 we can there-
fore compare (2.1) and (2.5), (2.4) and (2.6), (2.3) and (2.7), (2.2) and (2.8) to
obtain

ou,)+o(su)=0c(p,1)+o(s, M) (2.9)
o(u,)+o(t,n)=0(q,1)+0o(t,m) (2.10)
o, l)4+0o(s,n)=0(q,l)+ o(s,m) (2.11)
o, )+o(t,n)=0c(p,1)+o(t, m) (2.12)

Comparing (2.9) minus (2.10) and (2.11) minus (2.12) we obtain
o(p,)+o(s,m)—o(q,l)—oc(t,m) =0o(q,!)+o(s,m) —a(p,1) —o(t,m).
Hence & (p, 1) = 20(q, |), establishing our claim.

Claim 3. o(p,l) = o(p, m) for any pointp and lined, mwith p } I, m.

Proof: Letr =1 A mandn be aline withp I nandr J n. We have the blocks
(r.n). (p. ). (I An.TP)
(r.n). (p. m). (M A Nn,TP)
By the previous clains (I A n,Tp) = o(m A n,Tp) hences (p, 1) = o(p, M).
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We are now in a position to prove the lemma. Let (), (q, m) be any two
atoms ofFact V. There is a point |/ |, m. Then by Claims 2 and 3;(p,|) =
o(r,1) =o(r,m) = o(gq, m). As each block has exactly three atoms, it follows
thato(p, 1) = 1/3 for each atom|g, |); hence Fact Vhas at most one state. But
there is a state dract Vtaking the value A3 on each atom, namely, the state given
byo(S, S) = dim(S)/3 (see Harding, 1996, for details)C

3. APPLICATIONS OF THE LEMMA

We will require some notation for standard notations about vector spaces. Let
« be a cardinal. Recall that a basis ofalimensional vector spad&' is a map
& 1k — Wwith &, # &g for o # B such that the image dgfis an independent set
which spandV. Given such a basis, for each elementy € W one has a unique
family of scalarsw,, nonzero for only finitely many, such thatw = ) w&,.
Henceforth, we assuméis a three-dimensional vector space over the two-element
field Z, and that the sequengg, ¢1, 2 is a basis folV. As before we us&V)
for the lattice of subspaces ¥f Frequent use will be made of the fact that each
ordinal 8 has a unique representatign= o« + n wherew is a limit ordinal anch
is a natural number. We ugefor the set of natural numbers.

Lemma 3.1. Letk be an infinite cardinal, W be a-dimensional vector space
over 2, and§ : k — W be a basis of W. Thef. : S(V) — S(W) defined by

Ve(S) = {w € W | wai3no + Warant181 + Watani2l2 € S
for each ne w and limit ordinal @ < «}

is a bounded lattice embedding.

Proof: As (Aw + A'w’). = Awe + 2w, it follows easily thaty; (S) is indeed a
subspace dWV. Itis clear that the ma; is order preserving, henege (SNT) C
Ve (S) N (T) andyr: (S) + ¢ (T) S Y& (S+ T). To show thaty; is a lattice ho-
momorphism, it remains to show the reverse inequalities. Suppase/: (S) N
Y& (T). For each limit ordinad < « and each natural numberwe havewsnZo +
Want+181 + wang282 N both Sand T, hence inSNT. Thus y:(S) N y:(T) €
Ye(SNT).

Claim. Forany subspadeofV, the sefa&, sn + b&yrani1 + Céuaaniz | @ < k
is a limit ordinal,n € w andagg + b¢y + ¢2> € R} spansy(R).

Proof: If w € ¥¢(R) then wyianéutan + Warant1€atantl + Wotant2ba+ant2
also belongs t@:(R) and clearlyw is a finite sum of such vectors.
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To showy: (S+ T) € ¥:(S) + ¥&(T), it suffices to provide a spanning set of
¥:(S+ T)containediny:(S) + ¥:(T). Leta < « be alimitordinalnbe a natural
number, and suUppose = a3 + b&y13nt1 + C&yy3n2 Whereago + be1 + ¢z
isin S+ T. Then there ar@'¢o + b’y +¢'¢, € Sanda’¢p+b"c1 + ¢’ e T
with

alo+bir+cl =@+ +C%)+ @0+ b"¢+ ).

Settingw’ = a'&, a0 + 0’8y 3np1 + Céoqang andw” = a"8, 30 + 0”&y 3011 +
C"&y 1302 We then havey = w’ + w” and clearlyw’ € ¥:(S) andw” € ¥ (T).
Thusw € ¥:(S) + ¥&(T), showing thaty: (S+ T) C ¥ (S) + v (T).

Having established that: is a lattice homomorphism, note that clearly
preserves bounds. AXV) is a complemented modular lattice, each congruence
of V) is determined by its zero equivalence class. ButS) = {0} iff S= {0}.
Thereforey; is an embedding. O

In the following lemma we assume is an infinite cardinalW is a «-
dimensional vector space ov&p, and¢ : k — W is a basis ofV.

Lemma 3.2. The mapy?: Fact V— Fact W defined by, (S, S) = (v:(9).
¥:(S)) is an order embedding which preserves orthocomplementation and finite
orthogonal joins. Hence Fact V is isomorphic to a suborthomodular poset of
Fact W.

Proof: Suppose$, S)and (T, T') are elements dfact V. As (S, S) < (T, T)

iff S< T andT’ < S, which occurs iffiy: (S) < ¥ (T) andy:(T") < ¥:(S), we
have thatwéz) is an order embedding. AS(S)* = (S, S) one easily sees that
wéz) preserves orthocomplementation. & §) and (T, T’) are orthogonal, then
(SS)YV(T, T)=(S+T,SNT). So, if (S, S) and (T, T’) are orthogonal in
Fact V, then aszps(z) is order and orthocomplement preserving we hagfé(s, S)
and y{2(T, T') orthogonal inFact Wand y?((S, S) v (T, T)) = yP(S+T,
SNT)=We(S+T), ve(S N T) = (We(S) + Y (T), ¥ (S) N Y (T) = ¥
(S S)vyA(T.T). O

Theorem 3.3. For W a vector space over,ZFact W has a state iff W is finite
dimensional.

Proof: If W is of finite dimensionn, defines : Fact V — [0, 1] by setting
(S, S) =dim(S§)/n. Clearly ¢ is order preserving and ({0}, W) =0. If S,
T are subspaces with trivial intersection, then d&w(T) = dim(S) + dim(T).
It follows thato ((S, S)*) = dim(S)/n=1—dim(S)/n=1—-0(S, S). And if
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(S, S)isorthogonaltoT, T")thenasSN T = {0} we haves ((S, S) v (T, T)) =
o(S+T,SNT)=dm(S + T)/n = dm(S)/n+ dim(T)/n = o(S, S) +
o(T, T).

Supposé&Vis of infinite dimensiork and letV be a three-dimensional vector
space oveZ, with basisg, ¢1, ¢2.

Claim. If A, A" are complementary subspaced/feach of dimensiowr, then
there is a basis of Wsuch that &, A) is the image undep? : FactV — FactW
of an atom ofFact V.

Proof: Letu:x — Aandv:x — A be bases. Recalling that each element
of k¥ can be uniquely expressed ast n for some limit ordinale and some
natural numben define¢ : k — W by setting&, 3n = latn> Ext3ntl = Vat2n
andé&, ani2 = veaoni1. Then forSthe subspace of spanned by, and S the
subspace o spanned by, 2, we havey: (S) = Aandy:(S) = A'. It follows

that (A, A') is the image unde&éz) of the atom §, S) of Fact V.

To conclude the proof, suppose Fact W — [0, 1] is a state. ChoosA, A’
complementary-dimensional subspaces Wf. Then there is a basissuch that
(A, A) is the image undepéz) of an atom ofFact V, and ar o wéz) is a state on
Fact Vit follows from Lemma 2.1 that- (A, A') = 1/3. But we may also apply
this process to obtain a bagissuch that &', A) is the image undews(,z) of an
atom ofFact V, hences (A’, A) = 1/3. This contradiction showsact Whas no
state forW infinite dimensional. O

Theorem 3.4. For a set X, Fact X has a state iff X is finite and has more than
one element.

Proof: Suppose first that is an infinite set of cardinality. As there is a vector
space of cardinalityx over Z,, there is also a vector spa®é over Z, having
underlying setX. Clearly Fact Wis a suborthomodular poset &act X so it
follows from the previous theorem thBact Xhas no state.

Suppose now thaX is a finite set with more than one element andhtet
In | X|. Define a maps : Fact X — [0, 1] by settingo (6, 6’) = (In | X/6’])/m.
Then we haves(A, V) = (In1)/m = 0 ando is clearly order preserving. For
(0,0") a factor pair, X = X/0 x X0" so o(0,0")+0o(0',0) = (In|X/6'| +
In | X/6])/m, which by basic properties of logarithms equals ¥}’ x
[X/6])/m = (In | X])/m. It follows thato ((68, ")) = 1 — o (8, 9"). If (6, 8’) and
(¢, ¢") are orthogonal, then as shown in Harding (1996% X/6’ x X/(6 o ¢) x
X/¢'. It follows thato(0,60") + o (0 N¢’, 0 0 p) + o (¢, ¢') =1 and therefore
thato ((0,0) v (¢, ¢')) = 0 (6, 0") + (¢, ¢). Thus forX finite and having more
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than one elemerfact Xhas a state. IK has at most one element, theact Xis
the one element orthomodular poset which has no state.

Theorem 3.5. There is a finite orthomodular poset P which is isomorphic to
a suborthomodular poset of Fact X for X countable, but not isomorphic to a
suborthomodular poset of Fact X for any finite set X.

Proof: LetV be a three-dimensional vector space o¥gmwith basisg, ¢1, £2.
Let Sbe the subspace &f spanned by, andS be the subspace &f spanned
by ¢1, z2. Then G, S) is an atom offFact V. Let P be the orthomodular poset
consisting of four copies dfact Vwith an extra block having as its atoms the four
copies of §, S). SurelyP is finite. By Lemma 2.1 any state diact Vtakes value
1/3 on each atom, hence there is no stat® ais the sum of the values of the state
on the atoms of the extra block would bg34 By the previous theorer®, is not
isomorphic to a suborthomodular posetraict Xfor any finite seX.

To show thatP can be embedded infeact X for X countable, it is enough
to showP is isomorphic to a suborthomodular posetatt Wfor W a countable
dimension vector space ovE&p, say with basi§ : o — W.

Claim 1. There exist bases : w — W fori =0, 1, 2, 3 so that for eadh= |
(1) 30, m(&d, = Edny and (&, £y 0, o} N {Ed Ednss Enia) = E0)

(2) 3, M(Es, = by ANd (&, £y Enio) O {Edy Edns Edmio} = E5)

(3) 3N, M(E5n s = & ANA (€S, &1, &2} N {83 Edmsss Edmio) = Enya)
(4) 30, (&5, = Eda ANA{EL, oo o) N {Edn Ednia Edia) = Ehya)
(5) 3N, M(Ehyyq = & ANA{EL,, Eyya, 85 o) N {Ed s, Eamio) = Ehnra)
(6) 3N, M(Ehyy o = &4y Ad{Ed, 4y, Enyo) N {Edm Edmias Ema) = Euyo)
(7) 3n, m(§§n+2 = 53];m+1 and{één, Sén+1’ Sén+2} N {Sel;m» §§m+1» §?£m+2} = E:i%m-z)
(8) 3N, M(hyr = Edyip ANA{ES, Ent, €} N {83 St Emaa) = Eins2)

) {&4 In € w} = {Eansi | N € ).

Proof: The baseg' can be constructed by simply rearranging the sequencing
of the basist. To constructt’ we first fill every third spot oft' with a basis
element of the forn§4,.i. This can be done simply by settilggg1 = &4nyi. This
ensures the final condition. Note that the other eight conditions are of a finitary
nature—each refers to one triple of elements from each of the basgs Also,

as these conditions are to be read as logical statements, the choice of triples may
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vary from condition to condition, that is, a differemt, nmay be chosen for each
condition. One quickly sees it is trivial to fill in triples &f, &1 to ensure any one

of the conditions, and by separating the triples sufficiently, all eight conditions
may be established for dll# j. We then have assigned elements to every third
spot of each sequenéé and to finitely many other spots. One then simply fills
in the remaining spots &f in a manner which exhausts the members wfhich
have not already been usedsin

For (S, S) the atom ofFact Vdescribed above we have the following.

Claim 2. If AandB are subspaces dfdistinct from the bounds arid |, then
Ve (A) C ¥:i(B) iff A=SandB = S.

Proof: Assumey:i (A) € ¥:i(B) and thatago + by + 22 € A. By definition
of v it follows that

w" = agy, + bgénJrl + Céénﬁ

belongs toy:i (A) and hence taji (B) for anyn € . Consider the expansion
of w" with respect of the basis!. Choosem € w, let @’ be the coefficient of
the &3, term of this expansiorly be the coefficient of thej. ., term, andc’ be

the coefficient of th@ém .o term. Set
w™M =a'to+ b'¢y + ¢t

As w" belongs toy;; (B) for eachn € w, it follows thatw™™ belongs toB for
eachm, n € w. Applying this observation in conjunction with Conditions (1) and
(2) we haveats, ag» € B. Similarly Conditions (3)—(5) providbgg, bgi, bg, € B
and Conditions (6)—(8) providezp, ci1, €2 € B. As B is not the whole oV it
follows thatb = ¢ = 0. AsAis not trivial, it follows thata £ 0. This shows both
A=SandB =S.

Conversely, the elementsofi (S) are precisely those that have zeros in all but
the 3 spots of thei' expansion. Thus, by Condition (%Y (S) is the subspace
spanned byésn.i | N € w}. Butthe elements of; (S) are exactly the ones which
have zeros in therBspots of thei& ] expansions. Hence, by Condition (8}, (S)
is the subspace spanned {8y | n € w} — {&anyj | N € w}. S0P (S) S Yei (S)
concluding the proof of the claim.

To conclude the proof of the theorem, @be the subset dfact Wconsisting
of the union of the images of the ma: ) FactV — FactWfori =0, 1,2, 3.
From Claim 2 the images of the aton$,(S) under these maps are pairwise
orthogonal and these are the only orthogonalities between members of the images
of different maps. Clearl®is closed under orthocomplementation, &nid nearly
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closed under finite orthogonal joins as well. It is only the image$p8() which

are missing orthogonal joins. L8tbe the 16-element Boolean suborthomodular
poset ofFact Wgenerated by the images &,(S) and setQ’ = Q U B. Note,

if x belongs to the image oﬁé?), andy, z are distinct atoms oB, thenx is not
orthogonal toy v z as this would implyx is orthogonal to botty, z contrary to
Claim 2. Therefore there are no new orthogonalitieQIirwhich are not already
present in eithe® or B. It follows thatQ’ is closed under finite orthogonal joins
and thaB intersects) only at the bounds and the four atoms. It follows tR@is

a suborthomodular poset Bact Wthat is isomorphic t¢*. O

4. CONCLUSIONS

There are examples of finite orthomodular posets that cannot be embedded
into Fact X for any setX (Harding, 1996, contains one such example, and its
method can be used to create many more). However, one can show that that the
known examples of orthomodular posets which cannot be embeddelaictX
also cannot be embedded into any orthomodular lattice. A question occurs whether
every orthomodular lattice can be embedded Faot Xby an embedding which
preserves orthocomplementation and finite orthogonal joins. A positive answer to
this question would be most appealing. It would have the results of this paper as
trivial consequences (there is a finite orthomodular lattice without any state) and
moreover would provide an analog of Cayley’s theorem for orthomodular lattices.
The methods presented here seem insufficient to tackle this problem. However,
one at least obtains the useful information that to embed an orthomodular lattice
L into Fact X the seX one constructs must be infinite everifs finite.
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